If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=Q^2+4Q
We move all terms to the left:
-(Q^2+4Q)=0
We get rid of parentheses
-Q^2-4Q=0
We add all the numbers together, and all the variables
-1Q^2-4Q=0
a = -1; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-1)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-1}=\frac{0}{-2} =0 $$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-1}=\frac{8}{-2} =-4 $
| (x²)(8)=(8)(x²) | | 5x+4=74x= | | 2b-1=2b+2 | | 5-(2r-6)=6r-5 | | 4.9x^2+15x=200 | | 3(n-15)=-21 | | y6−9y3+8=0 | | 26x+(100-20x)=118 | | 9^(3x-12)=3^2x | | 2x^2+4=3x^2-5 | | 2x*2+4=3x*2-5 | | (3x-20)+5x=180 | | 7/x-28x=0 | | 7/x-28=0 | | -5(y+12)=8-y | | 2–2x=4 | | |4x+7|-8=41 | | Y3+3y=0 | | 4x×3x=84 | | 3(8+16y)=-4(-15y+9) | | 2(-19+2w)=-3(6w-2) | | -3(9y+3)+9y=-19y | | -14-14k=-7(2k+2) | | -10-g=-3g-10+2g | | 11d-10-2d=9d-10 | | 9z+3=-3(-3z-1) | | -u+17=17-8u+7u | | 9(3v-12)=18+20v | | 3(-2q+18)-6=-2q | | 6c+14c-17=15+18c | | -11-7w=-11-19w+12w | | 20-4q=-16-19q+19q |